Class

infcalcs

GWeight

Related Doc: package infcalcs

Permalink

case class GWeight(p: Pair[Double], bt: Tree[Bin]) extends Weight with Product with Serializable

Weight whose weights are generated from a Gaussian probability distribution

p

(mu, sigma) for calculating the Gaussian probability

bt

Tree of Bin instances defining signal space

Linear Supertypes
Serializable, Serializable, Product, Equals, Weight, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GWeight
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. Weight
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GWeight(p: Pair[Double], bt: Tree[Bin])

    Permalink

    p

    (mu, sigma) for calculating the Gaussian probability

    bt

    Tree of Bin instances defining signal space

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. val bt: Tree[Bin]

    Permalink

    Tree of Bin instances defining signal space

  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  11. val label: String

    Permalink

    Unique label identifying the weighting function.

    Unique label identifying the weighting function.

    Definition Classes
    GWeightWeight
  12. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  14. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. val p: Pair[Double]

    Permalink

    (mu, sigma) for calculating the Gaussian probability

  16. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  17. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  18. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. def weightTable[A](ct: CTable[A])(implicit arg0: Numeric[A]): CTable[Double]

    Permalink

    Applies the weights to a infcalcs.tables.CTable, generating a new infcalcs.tables.CTable

    Applies the weights to a infcalcs.tables.CTable, generating a new infcalcs.tables.CTable

    Note that the weights must be normalized to the existing distribution of data among the row dimension of the contingency table using the Weight.reWeight function

    Definition Classes
    Weight
  21. val weights: List[Double]

    Permalink

    Raw weights to be applied to data.

    Raw weights to be applied to data.

    Definition Classes
    GWeightWeight

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from Weight

Inherited from AnyRef

Inherited from Any

Ungrouped