Object/Trait

infcalcs

Weight

Related Docs: trait Weight | package infcalcs

Permalink

object Weight

Companion object to Weight trait.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Weight
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def calcWeight(func: (Double) ⇒ Double, lb: Double, hb: Double): Double

    Permalink

    Given a function, finds the difference in its evaluation of two numbers.

  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. def makeJoint(wv: Vector[Weight]): Weight

    Permalink

    Generates signal weights for n-dim signal data

    Generates signal weights for n-dim signal data

    Given n marginal signal distributions and assuming independence between the distributions, a joint signal distribution is calculated and a Weight is generated.

    wv

    vector of weights for signal distributions

    returns

    weight for joint distribution

  14. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. def reWeight(newW: List[Double], oldW: List[Double]): List[Double]

    Permalink

    Generates numbers to reweight data set given a desired and existing probability distribution over some dimension

    Generates numbers to reweight data set given a desired and existing probability distribution over some dimension

    newW

    desired distribution

    oldW

    existing distribution

  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  19. def testWeights(msg: String, wts: List[Double], threshold: Double = 0.95): List[Double]

    Permalink

    Determines whether the weights cover a sufficient range of the input space.

    Determines whether the weights cover a sufficient range of the input space.

    If the sum of the weights is above the threshold, the weights are returned; otherwise a exceptions.LowProbException is thrown containing the given message.

    msg

    String to pass to the exception if thrown.

    wts

    The list of weights.

    threshold

    The threshold to use to evaluate the weights.

    returns

    The list of weights.

    Annotations
    @throws( ... )
    Exceptions thrown

    exceptions.LowProbException if the sum of weights is less than the threshold

  20. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped